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A b s t r a c t  

As an example of extending harmonic lattice- 
dynamical procedures to silicates, the atomic thermal 
parameters for forstefite Mg2SiO4, an important 
constituent of earth's crust, have been calculated on 
this basis. For this purpose, Iishi's rigid-ion model 
[Am. Mineral. (1978), 63, 1190-1197; 1198-1208] was 
used, with slight modifications. Although such 
potentials were derived exclusively from fitting IR 
and Raman-active frequencies, the reproduction of 
the phonon-dispersion curves is good, and the calcu- 
lation of thermodynamic functions such as entropy 
provides values which are near to calorimetric esti- 
mates. The calculated atomic thermal parameters are 
in good agreement with the experimental values 
reported by most authors. The calculations at vari- 
ous temperatures show the effect of zero-point 
motion very clearly: its contribution to temperature 
factors is about half of the total at room tempera- 
ture. Bond-length corrections for thermal libration 
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can be applied using the general-case formula: these 
amount to 0.003/~ for the Si--O bonds at room 
temperature. Although the thermal parameters in the 
SiO4 group fit a rigid-body model, the correction 
obtained using the Schomaker-Trueblood procedure 
gives a significantly different result: this is essentially 
due to the weak librational character of the motion 
of silicate groups in the structure. 

I n t r o d u c t i o n  

The importance of atomic thermal parameters has 
been essentially discovered only recently; too often in 
fact they have been only considered as a substantial 
number of additional degrees of freedom to improve 
the final fit in least-squares refinements of crystal 
structures. 

The first application of crystallographic thermal 
parameters to the problem of bond-distance correc- 
tion was suggested by Cruickshank (1956) as a fit of 
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such parameters to a rigid-body scheme; later on, 
fundamental contributions to this problem were 
made by Busing & Lew (1957, 1964), Schomaker & 
Trueblood (1968, 1984), Johnson (1969, 1970, 1980), 
Dunitz & White (1973), Trueblood (1978) and 
Trueblood & Dunitz (1983). From these results, 
evidence in favour of the physical meaning of the 
displacement parameters (or a.d.p.'s) began to be 
clear. On similar grounds, the so-called 'rigid-bond 
test' (Hirshfeld, 1976; Rosenfield, Trueblood & 
Dunitz, 1978) has been shown to hold almost uni- 
versally, and for the few cases where discrepancies 
are observed there are precise physical reasons [see, 
for instance, Biirgi & Dunitz (1983)]. 

An independent verification of the physical 
validity of the crystallographic a.d.p.'s can be 
obtained from lattice dynamics. For structures of 
moderate complexity the best results have been 
obtained for molecular crystals. Here, in fact, the 
rigid-body model can be assumed to hold in many 
cases, and for less simple molecules a limited number 
of internal degrees of freedom can be considered to 
couple with the lattice motion. The first practical 
examples of these calculations with the rigid-body 
model have been shown by Cochran & Pawley (1964) 
to evaluate the diffuse scattering of hexa- 
methylenetetramine, by developing the ideas of Born 
(1942) and Laval (1941). Further significant applica- 
tions were reported by Pawley (1967, 1968), who 
explained in detail the relationships between the 
lattice-dynamical formulation and the crystal- 
lographic procedure; some useful theoretical contri- 
butions to the point are given by Scheringer (1972), 
Willis & Pryor (1975), and other authors. The exten- 
sion of the rigid-body treatment to non-rigid mol- 
ecules including the lowest internal frequencies was 
first proposed by Bonadeo & Burgos (1982) for 
biphenyl crystals; a procedure for the general case 
was given by Gramaccioli & Filippini (1983) with 
examples concerning a series of aromatic hydro- 
carbons of increasing complexity and non-rigidity. 
For charged molecules, a first example of such a 
calculation was given recently by Criado (1990); 
further details and references concerning the 
development of these ideas and routines can be 
found, for instance, in Gramaccioli (1987). For most 
of the cases considered so far, there is a good to 
excellent agreement between the results of lattice- 
dynamical calculations and the experimental values 
of the a.d.p.'s; when the agreement is poor, as for 
instance for benzene at relatively high temperature 
(138 K), the discrepancy can be ascribed to clear 
physical reasons [see, for instance, Filippini, 
Gramaccioli, Simonetta & Suffritti (1974) and 
Filippini & Gramaccioli (1989)]. 

Whereas, as we have seen, there are already a 
substantial number of examples in the literature of 

lattice-dynamical evaluations of a.d.p.'s for organic 
molecular crystals, there are practically no examples 
of calculations of this kind for minerals or inorganic 
substances in general. The few exceptions are sophis- 
ticated treatments of simple structures, such as 
sodium or potassium chloride [see, for instance, Reid 
& Smith (1970)] or cases like sulfur (Rinaldi & 
Pawley, 1973, 1975; Gramaccioli & Filippini, 1984), 
which is, however, still a molecular crystal. 

All this is in spite of high interest in possible 
geological applications, especially for silicates, or 
also in materials science applications: here the 
interest goes far beyond the possibility of calculating 
the a.d.p.'s, since it involves the possibility of evalu- 
ating the elasticity coefficients, and especially 
thermodynamic functions starting from crystal- 
structure data. Among the latter, a lattice-dynamical 
treatment permits the evaluation of specific heats c,. 
and cp, and also the vibrational contribution to 
functions involving the second law, such as entropy 
S and free energy F. The solution of such a problem 
would emphasize the fundamental role of crystal- 
lography, not only for knowing how a certain min- 
eral is formed, but also for deducing its behaviour 
under different conditions, a question which is 
regarded as much more important and interesting by 
petrologists and geologists in general [see, for 
instance, Kieffer & Navrotski (1985)]. 

Since it is necessary to perform a complete lattice- 
dynamical sampling of the Brillouin zone in order to 
obtain the a.d.p.'s, this difficult and lengthy opera- 
tion also permits thermodynamic functions to be 
deduced with very little additional effort. 

Why are such examples so few in the literature? 
The main difficulties with these substances can be 
ascribed to several factors: (1) the presence of 
charged atoms; (2) the absence (in general) of definite 
molecular units of limited extension; (3) the virtual 
lack of well-checked potentials which can be safely 
applied to a sufficiently wide group of minerals; and 
(4) the difficulties in obtaining reliable experimental 
data, e.g.a.d.p.'s that are not suffering significantly 
from absorption or especially extinction; also spec- 
troscopic data (IR, Raman) are not always reliable, 
the interpretation and/or the symmetry labelling 
being questionable in most cases, and there is no 
information concerning phonon-dispersion curves, 
except for a limited number of substances. 

The presence of charge makes evaluation of the 
lattice sums difficult because of very slow conver- 
gence: if a reasonable result is required, the sum- 
mations should be carried on the reciprocal lattice, 
following a routine first derived by Ewald (1921) for 
the static case, and then extended to the dynamical 
case by Born & Thompson (1934), Thompson (1935), 
and for the first time in a correct form by Keller- 
mann (1940) in his classic work on sodium chloride. 
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For the rigid-ion approximation or similar models, 
this routine has still remained essentially the same; a 
more general treatment of the static problem has 
been given by Bertaut (1952), and an extension of 
Bertaut's method to the dynamical problem has been 
developed by us quite recently (Pilati, Bianchi & 
Gramaccioli, 1990a). 

The difficulty for the charge problem becomes still 
greater if the effects of polarizability are taken into 
account. Fortunately, although such effects do exist, 
a rigid-ion model seems to work reasonably well in 
the few silicates which have been considered so far, 
i.e. quartz (Elcombe, 1967; Iishi, 1976; 1978; Iishi, 
Miura, Shiro & Murata, 1983), forsterite (Iishi, 1978; 
Ghose, Hastings, Corliss, Rao, Chaplot & 
Choudhury, 1987; Rao, Chaplot, Choudhury, 
Ghose, Hastings & Corliss, 1988), andalusite (Iishi, 
Salje & Werneke, 1979). For forsterite, the 
agreement with the optical frequencies seems to be 
worse for a polarized-ion model than for the rigid- 
ion model, in spite of the more elaborate nature of 
the former (Iishi, 1978). 

For these reasons, at least as a preliminary stage 
for studying the possibility of application to such 
compounds, we decided to adopt the rigid-ion 
model, using our own method for evaluating 
Coulombic lattice sums. For forsterite, a-Mg2SiO4, a 
member of the olivine group which can be con- 
sidered as one of the simplest (and most important) 
silicates to deal with, the problem of absence of a 
definite molecular structure is probably not so 
evident as it is for multiple chain-, sheet- or tecto- 
silicates. In the olivine structure, in fact, isolated 
tightly bonded SiO4 groups are present, connected by 
Mg ions via comparatively weaker Mg--O bonds of 
prevailing ionic character. On these grounds, the 
models proposed by Ghose et al. (1987) and Rao et 
al. (1988) have been worked out. However, in view of 
future extensive applications to a wide variety of 
compounds, we have developed a general-purpose 
routine which does not necessarily imply the pres- 
ence of isolated (or nearly isolated) groups; some 
difficulties were encountered, especially in coding the 
bending interactions between atoms in the structure 
belonging to different unit cells, and this problem is 
particularly evident for non-zero values of the wave- 
vector q. 

Although the problem of adequate semi-empirical 
potentials is far from being solved for the general 
case in calculating the vibrational properties of sili- 
cates, for forsterite some reliable force fields are 
given in the literature. For instance, Iishi (1978) 
could get a very reasonable fit to the observed 
Raman and IR-active frequencies of this mineral by 
essentially applying a modified Urey-Bradley field 
(Shimanouchi, 1963) and by assigning an appro- 
priate charge to the centre of the Mg, Si and O 

Table 1. Atomic parameters used in the present work 
(derived from Iishi's RI3 field by conversion of  Urey- 
Bradley force-field parameters into valence force-field 

parameters) 

Charge Z (in electron units) 
Mg=0.93; Si=0.70; O= -0.64 

Stretching constants (mdyn A -  J) 
Mg---O = 0.502 (0.64 final); Mg--Si = 0.037; Si----O = 5.298~.59(d- 1.637) 

[for Si--O d is the measured bond length (A)] 

Bending constants (mdyn A) 
o--s i - - -o  = 1.34 - 0-022(~o - 109.17) [~0 is the measured angle (~)] 

Stretching-stretching of  adjacent Si---O bonds (mdyn A J) 
x = 0.247 

Stretching-bending of  adjacent S i - - O  bonds and O---Si----O angles (mdyn) 
~b = 0.500 - 0-01(~0 - 109-17) 

Bending-bending for O - - S i - - O  angles sharing one edge (mdyn A) 
o)=0.12 

Interactions for the van der Waals field (below 3.5 A) between two oxygen 
atoms of  different tetrahedra (KJ mol-J) ,  as E =  528497r 9_  34987r-6 
(r is the distance in A). 

atoms (see Table 1). Another force field for forsterite 
which can be applied to rigid-ion models has been 
proposed by Rao et al. (1988). 

For forsterite, reliable experimental data concern- 
ing thermodynamic functions and even phonon- 
dispersion curves are available (Robie, Hemingway 
& Takei, 1982; Ghose et al., 1987); in addition, 
several independent determinations of the a.d.p.'s by 
crystal structure refinement can be found in the 
literature both for natural and synthetic crystals 
(Birle, Gibbs, Moore & Smith, 1968; Hazen, 1976; 
Fujino, Sasaki, Tak6uchi & Sadanaga, 1981; 
Bocchio, Brajkovic & Pilati, 1986; Langen, 1987). 
These are further reasons for having chosen this 
substance as the first silicate on which comparison 
between theoretical and experimental thermal 
parameters could be attempted. 

Method of calculation 

The elements of the dynamical matrix D(q) for a 
certain value of the wavevector q are given by 

D~ p'(q) = (mpmp,)- ]/2Zl qN//jP'(0,1)exp (2rriq. Ax I) (1 a) 

with 

tP,~e'(0,1) = 02E/Ox°Ox).p, (lb) 

[see, for instance, Willis & Pryor (1975), equation 
3.10b], where E is the energy of interaction between 
the atoms p and p', x°, is a coordinate of the pth 
atom in the unit cell, x~p, is a coordinate of the p'th 
atom in the crystal, related to x°p, by the lattice 
translation r 1, q is the wavevector, Ax ~ is the distance 
between the two atoms involved, and mp and mp, are 
the masses of the respective atoms. The summation 
Z I is extended (in principle) over the entire crystal. 
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By diagonalizing D(q) the normal-mode frequen- 
cies u~0(q) are obtained (in the harmonic approxi- 
mation); for a certain ¢t mode relative to a certain 
value of q the average energy Eo(q) can be obtained 
as 

Eq,(q) = hu~(q)(1/2 + {exp[huq,(q)/k T ] - 1 }  -1) (2) 

where h and k are the Planck and the Boltzmann 
constants, respectively, and T is the absolute tem- 
perature. From these data and the mass-adjusted 
polarization vectors e(Pl~bq) of the atoms in the unit 
cell, which are part of the eigenvectors of the D(q)'s, 
the a.d.p.'s [as U(p)'s] can be obtained as 

U(p) = ( Nmp) -1Z  ~.qEq,(q)[ 2 7r u ~0(q) ] - 2 

x e(pl~q)[e*(pl~q) ]' (3) 

where N is the total number of unit cells in the 
crystal. 

Similarly, thermodynamic functions such as the 
molar heats Cv and Cp as well as the entropy S can be 
derived from the same data: 

cv = 3 RZ,,g,,(h u/k T) 2 exp (h u/k T) 

x [ e x p ( h u / k T ) -  1]-2Au (4a) 

cp = Cv + f l 2 T V K r  (4b) 

S = E , , i b /T -  3RYvgJn[1 - exp(hu /kT)]Au .  (4c) 

Here Evib is the vibrational energy of the crystal, and 
gv is a density-of-states function, normalized to 
Y~g~Az, = 1. In (4b) fl is the coefficient of volume 
expansion and K r  is the isothermal bulk modulus: in 
this work (see below) the experimental data for these 
two quantities quoted by Price, Parker & Leslie 
(1987) have been used. 

The summations are extended to all the vibrational 
modes (~) for a certain point of the Brillouin zone 
and (in principle) to all the points in the Brillouin 
zone, each of them corresponding to a certain value 
of the wavevector q: for details about this procedure, 
see for instance Willis & Pryor (1975), or Filippini, 
Gramaccioli, Simonetta & Suffritti (1976). An 
uneven sampling of the Brillouin zone turns out to 
be particularly useful for fast convergence to a final 
value, otherwise the number of points to be sampled 
would become too large [see, for instance, Filippini 
& Gramaccioli (1989) and Kroon & Vos (1978, 
1979)]. In order to improve this procedure, a new set 
of progression formulae has been derived recently 
(Pilati, Bianchi & Gi"amaccioli, 1990b); the difference 
with respect to a very extensive sampling of the 
Brillouin zone (involving 103-104 points) and 
sampling over a considerably smaller number of 
points (64), as we have used here, is small (about 
1-2% for the B's and less than 0.2% for entropy), 
owing to the fast convergence of the series adopted 
here. 

The second derivatives in (lb) of the interaction 
energy have been evaluated analytically by con- 
sidering the interaction energy to be a sum of various 
contributions, i.e. the modified Urey-Bradley force 
field (including the van der Waals field) and the 
Coulombic contribution. For the former, the param- 
eters proposed by Iishi (1978) in his Table 4 for his 
rigid-ion model RI3 have been used initially, and 
Simanouti's (1949) routine has been employed for 
deducing stretching, bending and interaction con- 
stants: these data are reported in Table 1. Of the 
parameters reported in Iishi's table, only one called p 
and described as 'bond interaction for SiO4 internal 
modes', or also as 'bond-bond interaction for the 
adjacent Si--O bond pairs' (Iishi, 1978) does not 
seem to match the subsequent Simanouti treatment. 
For this reason we have chosen the value p = 0.144 
(instead of 0.288) on the basis of best fit with respect 
to Raman and IR frequencies. The van der Waals 
interactions have been considered for O---O contacts 
up to 3.5 A in length. 

The Coulombic contributions to the dynamical 
matrices D(q) have been evaluated by the modifi- 
cation of Bertaut's method recently developed by us 
(Pilati et al., 1990a): the atomic charge values are 
those proposed by Iishi (1978) for his rigid-ion 
model. Our modification of Bertaut's method, which 
replaces Ewald's routine, works in terms of second 
derivatives of structure factors, where the atomic 
form factors are replaced by the corresponding 
charge, and is close to usual crystallographic calcula- 
tions. The advantages of this procedure are its 
simplicity and the implicit accounting for the contri- 
butions of the macroscopic field, leading to TO-LO 
splitting for IR-active modes. In this application the 
reflections up a maximum sin0/,t value of 0.5 A-1 
have been considered. 

Results and discussion 

Our calculated values for the frequencies at q = 0 are 
reported in columns 4 and 5 of Table 2, which also 
gives the corresponding results and experimental 
values from Iishi (1978), Price et al. (1987) and Rao 
et al. (1988). 

The difference between our results in column 4 
and Iishi's are essentially small, as indeed they 
should be, since the same force field has been used, 
with the exception of the interpretation of the p 
parameter, as stated above. 

Notwithstanding the limitations of the rigid-ion 
model, Iishi's fit to his experimental data is appar- 
ently the best: this good agreement of Iishi's R/3 
model is a significant point in its favour, although it 
derives in part from the fact that the parameters have 
been specifically adjusted to provide the best fit to 
these frequencies; the number of such parameters 
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Table 2. Observed and calculated frequencies (cm- l) 
for  forsterite at the F-point (q = O) (our calculations 
with Mg--O stretching force constant o f  0.502 or 

0"702 mdyn/ l  -l ,  respectively) 

In the first column the range of observations by the different authors is 
reported. For /R-active modes, the range includes TO--LO splitting: for 
simplicity, Iishi's observed values are only reported here if they are consid- 
erably different from the other values. 

Iishi Iishi Our Our Rao Rao 
Obs. obs. calc. 0.502 0.702 Price obs. calc. 

A~ 960-966 966 958 955 959 943 
854-856 888 888 893 896 851 

F, 822-826 826 837 835 841 807 
606--609 609 606 635 659 630 
541-545 546 535 549 566 580 
420-424 424 414 464 504 427 
334-340 340 358 334 374 360 380 
325-329 329 287 299 344 344 342 
304-305 305 269 256 295 312 293 
221-227 227 228 218 227 221 252 
181-183 183 157 175 193 184 178 

.4~ 907 910 938 
526 551 519 

/'2 501 528 479 
359 404 452 458 
329 381 391 403 
298 353 340 359 
264 310 271 286 
223 262 250 233 
184 200 166 170 
130 138 58 104 105 

B, e 917-922 922 894 909 911 960 
(B~) 588-595 595 580 580 596 606 

407-4t2 412 411 464 492 417 
F, 371-376 376 367 348 387 390 382 

312-318 318 304 299 333 327 328 
272 272 277 261 308 250 256 
226 226 234 237 257 133 174 

Bzx 972-976 976 961 956 961 963 
(Bts) 863-866 866 891 895 898 864 

835-839 839 846 838 845 821 
/'4 626-632 632 629 645 667 667 

577-583 583 583 569 592 617 
428-434 434 412 473 503 454 

418 418 396 355 403 428 517 
314-318 318 316 316 349 337 367 
260-265 260 276 274 303 325 321 
215-224 224 230 226 247 269 264 
149 192 192 180 188 210 231 223 

B~ 880-884 884 891 902 905 901 
(B2,) 583-588 588 591 582 595 611 

436-441 441 451 479 514 433 
Fs 354-368 368 362 371 415 365 452 

324 324 306 287 331 345 314 
237-244 244 267 256 284 207 288 
142-150 142 166 152 162 149 

B,. 980-1086 956-976 954--974 959-979 995-1084 
(B3u) 957-963 915-916 913-913 916--916 960-991 

838-845 826--827 836-836 842-842 812-815 
/'6 601-645 565-601 615-638 638-667 657-658 

562-566 527-527 546-546 574-574 573-638 
498-544 493494 514--514 548-548 520-571 
438-469 - -  - -  -- 482-516 
403-438 403--469 403--413 368-398 421-436 437-471 531-601 
378-386 362-392 352-366 399-419 376-394 457-531 
320-323 312-347 305-337 347-376 34%349 416-441 
293-298 303-309 293-302 332-332 307-313 364-414 
274-276 264--265 261-261 289-290 293-293 321-356 

(224) 224 238-242 227-229 256-257 - -  300-315 
201 188-190 156-157 173-174 193-197 132-135 

By 885-994 890-913 902-923 904-926 879-1028 
(B3D 502-585 492-540 528-564 549-590 513-598 

483-489 480--491 510--510 544-547 476--452 
/'7 423-459 417-420 384-389 435--442 450--475 414-618 

365-371 345-362 318-353 375-388 375-390 389-413 
296-318 30%343 289-316 345-369 347-362 323-339 
274-278 266-274 242-253 278-287 313-321 293-300 

274 230-231 219-219 250-251 250-251 276-279 
201 208-209 188-188 204-204 176--177 202-204 

Table 2 (cont.) 

Iishi lishi Our Our Rao Rao 
Obs. obs. calc. 0.502 0 - 7 0 2  Price obs. calc. 

B3. 987-993 957-958 956-956 960-960 958-959 
(B2.) 882-979 897-917 892-913 895-916 900-906 

838-843 833-833 838-838 845-845 834--834 
I"8 . . . .  625-625 647-647 

537-597 581-584 535-564 565-591 581-581 
510-516 543-560 512-541 535-554 542-543 
465-493 467-513 --  - -  467--479 
421-446 417-423 367-376 41 I--421 427-430 562-624 
400--412 357-359 344-355 394-397 364--364 485--561 
352-376 321-344 305-341 359-384 338-354 408--480 
294-313 314-317 295-296 336-336 280-284 381-403 
280-283 278-297 266-281 300-311 250-250 312-332 

244 224 235-238 238-242 272-279 - -  267-267 
144 139-140 161-161 137-138 201 193-194 

(14) is comparable with the models of Price et al. (13 
parameters) and Rao et al. (14 parameters for their 
molecular-ion model and 19 for their rigid-ion 
model). However, the model of Price et al. has been 
derived, at least in part, from fitting other properties 
(not necessarily only the IR and Raman-active fre- 
quencies) and from Hartree-Fock ab initio calcula- 
tions. Similarly, some of the parameters of Rao et al. 
seem to have been derived not particularly for 
forsterite, and here the agreement with further 
(nonspectroscopic) data, such as elastic constants, 
etc. has been considered as well. Probably the best 
appreciation of these more recent models will be 
obtained if they are extended to a sufficiently large 
group of different minerals. 

Fig. 1 reports the calculated phonon-dispersion 
curves with our interpretation of Iishi's RI3 field; 
they are compared with the experimental values 
obtained by Ghose et al. (1987). Although no fit to 
such data was ever considered by Iishi (since no 
experimental data of this kind were available at that 
time and no calculations for q ~ 0 were performed by 
him), his RI3 field behaves well in predicting the 
phonon-dispersion curves* and therefore probably 
has some intrinsic physical validity. In considering 
such a fit, particular importance should be given in 
our case to the lowest frequencies, since the 
calculated values of the U's (or B's) depend almost 
exclusively on them. 

In view of this situation, a slight adjustment of 
Iishi's field seemed reasonable. In fact, some 
calculated branches (see /;3 and zll in Fig. 2) are 
appreciably too low with respect to the experiment, 
and here the model of Rao et al. appears to be much 
better, in spite of the poor agreement with the 
Raman and IR data (however, some of the low- 
frequency Raman and IR experimental data are 
rather questionable, in spite of their importance for 

* For a very small region of  the Brillouin zone in the proximity 
of  the origin and centred on q = (0.003, 0-003, 0-003) there are 
imaginary frequencies of  the order of  2-3i (cm-z). In this case our 
calculations have been performed by assuming the lowest acoustic 
branch to be a straight line in that interval. 
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our purposes). Another indication that especi- 
ally the lowest frequencies are calculated too 
low is the estimated value of the entropy at 
298 K (=  103.0Jmol  -] K-~), which is too large 
with respect to the experimental result 
[94-03 J mol-~ K-~ in Robie et  aL (1982)]. 

A reasonable proposal might be to raise some of 
the calculated branches, especially the acoustic ones 
in the low-frequency region: here, the Mg- -O  
contacts should dominate the situation, since they 
correspond to the weakest points in the structure. 

For this reason, we have tried to harden the 
M g - - O  bonds, by raising the corresponding 
stretching force constant to 0-702mdyn A -~ (no 
satisfactory result was obtained on varying the 
atomic charge). Using this 'new' field, we have 
re-calculated all Raman and IR-active frequencies, 

q/a" 

zl~ z] 4 

m loo 

o ~ 
q/b" 

AI A4 
J i , , J , , , 

0 0.5 0 

"~'I "~3 

q/a* 

A:, ~3 

and the results are reported in the column 5 of Table 
2. Whereas the fit to some of the higher frequencies 
is slightly worse, for the lowest frequencies, and 
especially in the lowest part of the acoustic branches, 
there is a slight but definite improvement (see Fig. 2); 
the situation is still better than it appears in the 
drawing, since other values measured by different 
authors and reported in Table 2 for q = 0 are nearer 
to our calculations than the data of Ghose e t  al. 

(1987). Also, the calculated value of entropy 
(91"4Jmol  -~ K - l )  at room temperature is con- 
sistent with the experimental value. If the stretching 
constant of the M g - - O  bonds is further increased, 
the improvement becomes less evident. 

In order to have the best agreement with the 
experimental data, we finally adjusted the value of 
the M g - - O  stretching constant to match the 
experimental value for entropy at room temperature 
(298 K): this corresponds to a value of 
0.64 m d y n / ~ -  ] 

~2 >--'4 -~ ~;3 
i - - ~  

J 

I I I I 

qla" q/a* 

z]~ A 4 A~ 
• • • , , , , 

300 

~. • 1 

O ~  ~ i , , 

q/b* 

q/c" q/c" 

Fig. I. Calculated phonon-dispersion CuFves for forsterite along 
the crystal axes a, b and c. Here a stretching constant of 0.502 
mdyn A- '  for the Mg--O bonds has been used, as in lishi's 
R/3 field; the points correspond to the experimental values 
obtained by Ghose et al. (1987) and these values only are 
reported. For simplicity, the higher curves are not represented 
in the drawing. 

F- 

A a 
I t I l 

q/b* 

I I I I I I I I f I I I I I I I 

0 0.5 0 
q/c* q/c" 

Fig. 2. Calculated phonon-dispersion curves for forsterite. The 
situation is the same as for Fig. l with the exception of  the 
Mg---O stretching constant,  which has been raised to 
0.702 mdyn .~- '. 

AI A4 A 2 A a 
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Table 3. Calculated anL~otropic atomic displace- 
ment parameters (x  105) for  forsterite at various 

temperatures 

The temperature factor is in the form T = e x p [ - 2 ~ r 2 ( U u h Z a * 2 +  . . . .  + 

2U23klb*c*)]. The cell parameters in our reference system are chosen so that 
a > b > c; the atomic coordinates correspond to Fujino et al .  (1981) with the 
exception of  O(2), which is transformed 

UI, UI2 Ut3 
T = 0 K (zero-point contribution) 
Mg(l) 297 - 2 5  - 14 
Mg(2) 253 0 12 
Si 171 0 3 
0(1) 299 0 0 
0(2) 212 0 - 12 
0(3) 284 41 17 

T = 2 0  K 
Mg(l) 298 - 2 5  - 14 
Mg(2) 254 0 12 
Si 172 0 3 
0(1) 300 0 0 
0(2) 213 0 - 12 
0(3) 285 41 17 

T = 7 7  K 
Mg(1) 329 - 2 9  - 16 
Mg(2) 276 0 13 
Si 194 0 3 
0(1) 323 0 0 
0(2) 234 0 - 12 
0(3) 307 42 18 

T = 298 K 
Mg(l) 707 - 88 - 4 4  
Mg(2) 538 0 39 
Si 400 0 9 
O(l) 581 0 I 
0(2) 421 0 - 7  
0(3) 553 78 34 

T = 453 K 
Mg(l) 1028 - 133 - 6 7  
Mg(2) 773 0 59 
Si 574 0 13 
0(1) 817 0 2 
0(2) 583 0 - 8 
0(3) 775 ! 15 50 

T = 578 K 
Mg(I) 1306 - 173 - 80 
Mg(2) 978 0 77 
Si 731 0 17 
0(1) 1036 0 3 
0(2) 733 0 - 12 
0(3) 985 148 66 

T = 723 K 
Mg(I) 1612 -217  - 100 
Mg(2) 1201 0 96 
Si 896 0 22 
O(1) 1272 0 4 
0(2) 891 0 - 15 
0(3) 1207 185 82 

T =  883 K 
Mg(l) 1955 -267  -122  
Mg(2) 1450 0 117 
Si 1082 0 26 
0(1) 1539 0 4 
0(2) 1070 0 - 2 0  
0(3) 1461 227 100 

T = 1023 K 
Mg(I) 2269 - 311 - 146 
Mg(2) 1680 0 135 
Si 1258 0 28 
O(I) 1790 0 4 
0(2) 1240 0 - 26 
0(3) 1698 263 115 

T =  1 1 7 3 K  
Mg(l) 2587 - 359 - 167 
Mg(2) 1909 0 154 
Si 1433 0 32 
0(1) 2048 0 4 

by I/2 + x,  y,  1/2 - z. 

(.]22 U23 U33 U~q (/~2) 

260 - 16 263 273 
274 0 272 266 
166 0 143 160 
298 0 183 260 
296 0 260 256 
235 - 6  256 258 

261 - 1 6  264 274 
275 0 272 267 
168 0 144 161 
299 0 183 261 
297 0 260 257 
236 - 6  257 259 

284 - 1 8  281 298 
297 0 290 288 
187 0 157 179 
320 0 196 280 
316 0 274 275 
255 - 5 271 278 

566 - 52 544 606 
596 0 570 568 
383 0 292 358 
568 0 319 489 
554 0 454 476 
452 6 446 484 

815 - 79 781 875 
861 0 820 818 
548 0 410 511 
797 0 429 681 
776 0 626 662 
628 12 614 672 

1048 - 102 989 1114 
1106 0 1043 1042 
710 0 523 655 

1027 0 538 867 
1002 0 794 843 
804 13 779 856 

1293 - 127 1224 1376 
1362 0 1292 1285 
873 0 644 804 

1266 0 655 1064 
1234 0 976 1034 
981 16 958 1049 

1567 -156 1487 1670 
1649 0 1572 1557 
1056 0 783 974 
1537 0 791 1289 
1498 0 1186 1251 
1182 19 1165 1269 

1810 -180  1722 1934 
1903 0 1821 1801 
1219 0 908 1128 
1779 0 915 1495 
1734 0 1374 1449 
1362 21 1352 1471 

2071 -207  1973 2210 
2174 0 2088 2057 
1395 0 1043 1290 
2047 0 1047 1714 

Table 3 (cont.) 

U,, U,2 U,3 U n  U2~ U. Ucq(A 2) 
0(2) 1410 0 - 32 1995 0 1580 1662 
0(3) 1942 304 132 1556 23 1554 1684 

T = 1 2 9 3 K  
Mg(l) 2830 - 398 - 183 2279 - 228 2173 2427 
Mg(2) 2079 0 169 2392 0 2303 2258 
Si 1557 0 34 1536 0 1154 1416 
O(1) 2238 0 4 2261 0 1157 1885 
0(2) 1530 0 - 39 2204 0 1750 1828 
0(3) 2122 335 146 1711 22 1723 1852 

The calculated a.d.p.'s as U's o r  Ueq'S at room 
temperature (298 K) are reported in Table 3; these 
can be compared with the experimental results 
obtained by a few authors, who refined the structure 
of forsterite with particular care, such as for instance 
Birle et al. (1968), Hazen (1976), Fujino et al. (1981), 
Bocchio et al. (1986) and Langen (1987) (see Table 
4). The agreement is remarkably good, especially in 
view of theoretical and experimental difficulties. 
Hazen's results are exceptional, all being too low, 
not only with respect to our calculations, but also 
with respect to all the other experimental values. 
Moreover, at low temperature (77 K) Hazen's experi- 
mental values for all the U's are non-positive defi- 
nite. Therefore, in Hazen's work there is a serious 
drawback concerning the magnitude of the a.d.p.'s, 
which are too low: as it is suggested in a footnote of 
the article itself, this fact is very probably due to a 
particularly strong extinction, because a highly per- 
fect, gem-quality synthetic crystal was used, and no 
general correction for extinction was made (only 
some of the strongest reflections were discarded from 
the refinement). In Fujino et al. (1981), which is 
probably the most accurate structural work in view 
of electron-density measurement, the data were also 
obtained from a synthetic crystal, but extinction was 
accounted for according to Zachariasen's (1967) 
method. For all the other forsterite samples, natural 
crystals were used, most of which came from a rock's 
bulk, and were therefore not necessarily perfect, 
although single. The purity of these natural forster- 
ites is nearly exactly 90%, the rest being almost 
exclusively the corresponding iron compound a-Fe2- 
SiO4 (fayalite). In order to check whether the pres- 
ence of iron influences the values of the a.d.p.'s, our 
calculations have been repeated by assuming the 
mass of the metal atoms to be the weighted average 
of Mg and Fe; the results are practically identical 
(within 1%), and the differences are well below the 
presumable accuracy of the experimental data 
(10-20% for the diagonal terms). Also the experi- 
mental values of the U's for other terms of the 
olivine series rich in iron, up to fayalite itself, are not 
substantially different from those of forsterite [see 
Birle et al. (1968) and Fujino et al. (1981): there is 
only a slight increase up to 10-20% for the pure end 
member]. 



308 FORSTERITE 

Table 4. Anisotropic atomic displacement parameters 
(x 105) for forsterite at room temperature, from 

crystal structure refinement 

The reference system and the expression of temperature factors are the same 
as for Table 3. The standard deviations in the data are 10 4 to 3 x 10 4 
(Bocchio et al.), 3 x 10 -4 to 8 x 10-4 (Hazen), about 5 x 10- 5 (Langen), 
10- ' to  2 x 10-4(Fujino et  al.), and about 5 x 10 4 (Birle et  al.), all in A 2. 

U,, U,2 U,3 U22 U23 U .  U~(A ~) 
Langen (1987), model G (high-order reflections) 
Mg(1) 702 - 110 - 10 469 - 59 450 540 
Mg(2) 466 0 15 547 0 590 534 
Si 415 0 14 405 0 286 369 
O(1) 699 0 36 576 0 315 530 
0(2) 421 0 5 607 0 526 518 
0(3)  677 163 31 523 - 26 515 572 

Bocchio et al. (1986) (crystal PB9, high-order reflections) 
Mg(l)  578 - 118 0 575 - 69 539 564 
Mg(2) 339 0 17 635 0 692 555 
Si 292 0 15 500 0 381 391 
O(1) 573 0 - 42 644 0 400 539 
0(2) 329 0 - I0 702 0 589 540 
0(3) 530 149 30 630 - 32 599 586 

Hazen (1976) (data at 296 K and 1 atm) 
Mg(l)  540 - 9 3  20 180 - 4 0  280 333 
Mg(2) 320 0 0 290 0 250 289 
Si 230 0 12 150 0 90 157 
O(1) 480 0 50 420 0 100 333 
0(2)  370 0 - 20 400 0 280 350 
0(3)  490 120 20 290 - 4 0  250 343 

Fujino et al. (1981) 
Mg(l)  710 - 111 - 15 512 - 55 477 566 
Mg(2) 490 0 22 596 0 592 560 
Si 437 0 2 422 0 300 385 
O(1) 620 0 10 560 0 340 508 
0(2) 430 0 10 600 0 500 510 
0(3)  630 148 15 510 - 27 510 551 

Birle et  al. (1968) 
Mg(l)  418 
Mg(2) 456 
Si 253 
0(1) 443 
0(2) 532 
0(3) 519 

The lattice-dynamical calculations clearly account 
for the comparatively low Ueq value for Si, which 
was about two-thirds of the corresponding values for 
Mg and O atoms: this situation has already been 
noted by Burnham (1965) in the experimental values 
for many other silicates, and is a consequence of 
strong bonds between oxygen and four-valent sili- 
con. Also the anisotropic behaviour of the a.d.p.'s is 
substantially well reproduced: the components of the 
U (and B) tensors are in agreement with their experi- 
mental values even for O(1), where anisotropy is 
particularly marked ( U 3 3  is about half of either Ull 
or U22). In order to give a pictorial representation of 
the agreement of our theoretical results with the 
experimental data, ORTEPII drawings (Johnson, 
1976) of the asymmetric unit of forsterite at room 
temperature including thermal ellipsoids are given in 
Fig. 3. 

In view of this favourable situation, we have 
repeated the calculations for different values of 
temperature, and Table 3 reports our results for a 
comparison and further check of this model with 

future accurate experimental work. For this purpose 
Hazen's unit-cell parameters have been used, since 
they agree with the corresponding data from other 
authors, when available; for very low temperatures 
the same unit-cell parameters as for 77 K were used, 
because of the lack of experimental data and also 
because, on the other hand, the unit-cell parameters 
undergo only a minor change with temperature, so 
that no significant influence on our calculations can 
be expected. Table 3 also shows the variation of the 
equivalent isotropic U's as a function of temperature: 
for the lowest values of T, the situation is very 
different from all too many plots which are reported 
in the literature, where extrapolation to zero for T---, 
0 is assumed. Here, and especially for such strongly 
bonded structures as silicates, the relative importance 
of the zero-point contribution is quite large and 
corresponds to about half of the total at room 
temperature; a similar situation (although less 
marked, because the structure is molecular, and 
therefore less strongly bonded) was pointed out 
recently by Filippini & Gramaccioli (1989) for 
benzene crystals. 

The plot of the calculated U's versus temperature 
could be extended towards high values of T; 
however, beyond a certain point the harmonic 
approximation might not hold, and for this reason 
we did not extend our calculations above 1300 K. 

Besides examining temperature factors, a con- 
sistent check might be examining some thermo- 
dynamic functions as well, such as for instance 
entropy S and the molar heat Cp (see Table 5). The 
agreement with the experimental values of Robie et 
al. (1982) is quite reasonable, and this confirms our 
good grounds for being confident in our predictions 
of the a.d.p.'s in this temperature range. At very low 
temperature, the difference between the observed and 
calculated values of the thermodynamic functions, 
which drop to zero in the proximity of 0 K, becomes 
considerable on a relative basis; in this respect, the 

0(1 ) z I = 

0(3) 

Observed Calculated 
Fig. 3. An O R T E P I I  drawing (project ion on the mir ror  plane 

{010}) o f  the calculated and observed (Bocchio e t  al . ,  1986) 
thermal  ellipsoids for  the asymmetric  unit o f  forsterite at room 
temperature.  The  volume o f  the ellipsoids corresponds  to a 
99.9% probabili ty.  



PILATI, BIANCHI AND GRAMACCIOLI 309 

Table 5. Observed and calculated c: and S (J mol-1 
K-1) for forsterite at various temperatures (K) 

The experimental data are from Robie et  al. (1982). 

T cp(obs) c:(calc) S(obs) S(calc) 
20 0.27 0.31 0.08 0.02 
77 18.64 19-21 6-72 6.50 

298 118.5 118.4 94'0 94-0 
453 143-3 145.6 148"9 148-3 
578 154-1 157.4 185"5 185-0 
723 162"9 i 65"6 221 "2 220.2 
883 170"5 171 "5 254"6 252.9 

1023 176"0 175.1 280-4 277-5 
i 173 180-7 178.1 304-5 300.8 
i 293 183-9 180"2 322-4 317'6 

results obtained by Price et al. (1987) using a more 
sophisticated (shell) model are definitely better. 
However, for all the other temperatures (which 
correspond to the most usual conditions) the rigid- 
ion model behaves very satisfactorily, in spite of its 
simpler nature. 

The normalized density of states for forsterite 
according to our calculations is shown in Fig. 4. In 
this respect, the only comparison which can be made 
is with the calculations of Price et al. (1987) and 
Rao, Chaplot, Choudhury, Ghose & Price (1987). 
All agree on the gap between 650 and 800 cm-1 
corresponding to separation between the high- 
frequency stretching modes of the Si--O bonds and 
the lower frequency modes. We have, however, 
another smaller gap around 450 cm-1, correspond- 
ing grossly to the separation between the bending 
modes of the SiO4 tetrahedra and the 'lattice' modes 
mainly involving Mg--O stretching. 

/ H 
~o 4o0 660 8oo looo 

cm -1 

Fig.  4. D e n s i t y  o f  s ta tes  h i s t o g r a m  for  forster i te ,  f rom o u r  

ca l cu la t ions .  

Table 6. Values of  the Si--O distances (t~) as a 
function of  temperature 

The experimental data are taken from Hazen (1976). The correction for 
thermal iibration derives from our lattice-dynamical calculations. 

Si----O(l) Si--O(2) Si--O(3) 
T (K) Uncorr. Corr. Uncorr. Corr. Uneorr. Corr. 

77 1"616 (2) 1"618 1-649 (2) 1"651 1"633 (2) 1-635 
296 1"615 (3) 1.618 1.640 (3) 1.643 1.633 (2) 1.636 
623 1.614 (3) 1-618 1.636 (4) 1-640 1-624 (3) 1.628 

1047 I "615 (5) 1.622 1-636 (5) 1-643 1.623 (3) ! .630 
1273 1 '615 (4) 1.625 1-649 (4) 1-659 1.628 (3) 1-638 

Since lattice dynamics provides not only thermal- 
motion tensors Up = (UpUp) relative to the same atom 
p, but also the tensors Upp, = (UpU~,,) between differ- 
ent atoms p and p', the experimental bond lengths 
can be corrected for thermal motion in the most 
general case, using the procedure of Scheringer 
(1972) or of Johnson (1980) [see also Filippini & 
Gramaccioli (1989)]. 

The results are shown in Table 6. At room 
temperature, the bond-length correction for the 
Si--O bonds amounts to 0-003 A, at 77 K to 0.002 A 
and at 1273 K to 0.010 A; this correction is almost 
the same for all these bonds. If the SiO4 groups are 
essentially rigid, the corrected bond distances should 
essentially maintain their values at all temperatures; 
however, this does not seem to be the case, if Hazen's 
results (which represent the only set of accurately 
refined structures for various values of temperature 
and pressure) are taken as standards. 

A close inspection of Hazen's data reveals some 
problematical features: for instance, there is a 
consistent difference between his Si--O(2) distance at 
room temperature and the corresponding values 
reported by all the other authors here mentioned, 
who find it to be appreciably larger (from 0.014 to 
0.021 A). The behaviour of the uncorrected bond 
distances with respect to increasing temperature is 
quite irregular and far from a general apparent 
decrease, as it should be for a rigid body [see, for 
instance, Schomaker & Trueblood (1968)]. 

Because of the presence of systematic errors in 
Hazen's data, these are not the best data for testing 
the rigidity of the SiO4 group. Another possibility for 
such tests is to check the fit of the individual a.d.p.'s 
to a rigid body, using the experimental results 
obtained by other authors. In Table 7 the results 
from a Schomaker-Trueblood fit to this group using 
the room-temperature data of Bocchio et al. (1986) 
are given, and the corresponding libration correc- 
tions to the Si--O bonds are also reported. 

The agreement between the observed U's of the Si 
and O atoms and the corresponding calculated 
values from the Schomaker-Trueblood fit is very 
good, the maximum difference barely exceeding 3o- 
(in one case only), and in most cases being below the 
standard deviation. This is evidence in favour of 
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Table 7. An example of Schomaker & Trueblood's 
rigid-body fit to experimental Uo's in the SiO4 tetra- 
hedron of forsterite using the room-temperature data 

of Bocchio et al. 

T x 104 (A r) 29 (2) 0 I (2) Eigenvalues of T 
50 (2) 0 ( x 104A 2) 

42 (2) 
L x 104 (rad-') 5 (2) 0 2 (2) Eigenvalues of L 

9 (2) 0 (deg 2) 
12(l) 

Sx 104 (A rad) 0 0(I) 0 
I (l) 0 - 2  (I) 
0 2 (2) 0 

Thermal libration corrections (A) 
Si---O(I) = 0.001; Si---O(2) = 0.002; Si--O(3) = 0.001 

50 (2) 
42 (2) 
29 (2) 
4.2 (4) 
3-1 (6) 
1.5 (8) 

rigid-body behaviour. However, the Schomaker- 
Trueblood room-temperature libration corrections to 
the experimental Si--O bonds range from 0.001 to 
0.002 A, and substantially differ from our general- 
formula results (0-003 A for each case). A possible 
explanation of this discrepancy comes from con- 
sidering the strong prevalence of the T tensor contri- 
bution to all the U's (the eigenvalues of L range from 
1-5 to 4.2 deg2); i.e. there is a remarkably small 
libration with respect to a molecular crystal at the 
same temperature. This is obvious on considering 
that the SiO4 group is linked to the rest of the 
structure through the Mg atoms by ordinary 
chemical bonds. In view of this small librational 
character, the relative value of the L tensor (which 
determines libration corrections) is strongly influ- 
enced by the experimental uncertainties in the U's 
and also by a comparable effect of the internal 
motion. 

Therefore, the problem of defining what is really a 
rigid body does not always lead to a clear-cut 
answer, especially if conditions are not those of a 
molecular crystal with tightly bonded atoms within 
each molecule. In this case the validity of a rigid- 
body model depends on the accuracy which is 
wanted, and a value of 0.001/~ or below for bond- 
length measurements using room-temperature data is 
by no means granted by easy routine application. 

We are indebted to Professor Dr G. Will of the 
University of Bonn and to Dr R. Langen for having 
provided us with useful information concerning 
experimental crystallographic data of samples of 
natural forsterite. 

R e f e r e n c e s  

BERTAUT, F. (1952). J. Phys. (Paris), 13, 411-505. 
BIRLE, J. D., GIBBS, G. V., MOORE, P. B. & SMITH, J. V. (1968). 

Am. Mineral. 53, 807-824. 
Bocci-no, R., BRAJKOVlC, A. & PILATI, T. (1986). Neues Jahrb. 

Mineral. Monatsh. 7, 313-324. 
BONADEO, H. & BURGOS, E. (1982). Acta Cryst. A38, 29-33. 

BORN, M. (1942). Rep. Prog. Phys. 9, 294-333. 
BORN, M. & THOMPSON, J. H. C. (1934). Proc. R. Soc. London Ser. 

A, 147, 594-599. 
Bf3RGI, H. H. & DUNITZ, J. D. (1983). Acc. Chem. Res. 16, 

153-161. 
BURNHAM, C. W. (1965). Am. Mineral. 50, 282. 
BUSING, W. & LEVY, H. A. (1957). J. Chem. Phys. 26, 563-568. 
BUSING, W. & LEVY, H. A. (1964). Acta Cryst. 17, 142-146. 
COCHRAN, W. & PAWLEY, G. S. (1964). Proc. R. Soc. London Set. 

A,  280, 1-22. 
~ ,  A. (1990). Acta Cryst. A46, 489-494. 
CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 747-753; 754-756; 

757-758. 
DUNITZ, J. D. & WHITE, D. N. J. (1973). Acta Cryst. A29, 93-94. 
ELCOMBE, M. (1967). Proc. Phys. Soc. 91,947-958. 
EWALD, P. P. (1921). Ann. Phys. (Leipzig), 64, 253-287. 
FILIPPINI, G. & GRAMACCIOLI, C. M. (1989). Acta Cryst. A45, 

261-263. 
FILIPPINI, G. & GRAMACCIOLI, C. M., SIMONETTA, M. & 

SUFFRITTI, G. B. (1974). Acta Cryst. A30, 189-196. 
FILIPPINI, G. & GRAMACCIOLI, C. M., SIMONETTA, M. & 

SUFFRITTI, G. B. (1976). Acta Cryst. A32, 259-264. 
FUJINO, K., SASAK1, S., TAKEUCHI, Y. & SADANAGA, R. (1981). 

Acta Cryst. B37, 513-518. 
GHOSE, S., HASTINGS, J. M., CORLISS, L. M., RAO, K. R., 

CHAPLOT, S. L. & CHOUDHURY, L. (1987). Solid State Commun. 
63, 1045-1050. 

GRAMACCIOLI, C. M. (1987). Int. Rev. Phys. Chem. 6, 337-349. 
GRAMACCIOLI, C. M. & FILIPPINI, G. (1983). Acta Cryst. A39, 

784-791. 
GRAMACCIOLI, C. M. & FILIPPINI, G. (1984). Chem. Phys. Lett. 

108, 585-588. 
HAZEN, R. N. (1976). Am. Mineral. 61, 1280--1293. 
HIRSHFELD, F. L. (1976). Acta Cryst. A32, 239-244. 
hsHi, K. (1976). Z. Kristallogr. 144, 289-303. 
hsHI, K. (1978). Am. Mineral. 63, 1190-1197; 1198-1208. 
hSHI, K., MIURA, M., SHIRO, Y. & MURATA, H. (1983). Phys. 

Chem. Mineral. 9, 61-66. 
IISHI, K., SALJE, E. & WERNEKE, C. (1979). Phys. Chem. Mineral. 

4, 173-186. 
JOHNSON, C. K. (1969). Acta Cryst. A25, 187-194. 
JOHNSON, C. K. (1970). In Crystallographic Computing, edited by 

F. R. AHMED, pp. 207-226. Copenhagen: Munksgaard. 
JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak 

Ridge National Laboratory, Tennessee, USA. 
JOHNSON, C. K. (1980). In Crystallographic Computing, edited by 

R. DIAMOND, S. RAMASESHAN & K. VENKATESAN, pp. 14.01- 
14.19. Bangalore: Indian Academy of Sciences. 

KELLERMANN, E. W. (1940). Phys. Trans. R. Soc. London, 238, 
513-548. 

KIEFFER, S. W. & NAVROTSKY, A. (1985). Microscopic to 
Macroscopic, Reviews in Mineralogy No. 14. Washington: 
Mineralogical Society of America. 

KROON, P. A. & Vos, A. (1978). Acta Cryst. A34, 823-824. 
K.ROON, P. A. & Vos, A. (1979). Acta Cryst. A35, 675-684. 
LANGEN, R. (1987). PhD Thesis, Rheinisches Friedrich-Wilhelm 

Universit/it, Bonn, Federal Republic of Germany. 
LAVAL, J. (1941). Bull. Soc. Fr. Mineral. Cristallogr. 64, 1-138. 
PAWLEY, G. S. (1967). Phys. Status Solidi, 20, 347-360. 
PAWLEY, G. S. (1968). Acta Cryst. B24, 485-486. 
PILATI, T., BIANCHI, R. & GRAMACCIOLI, C. M. (1990a). Acta 

Cryst. A46, 309-315. 
PILATI, T., BIANCHI, R. & GRAMACCIOLI, C. M. (1990b). Acta 

Cryst. A46, 485--489. 
PRICE, G. D., PARKER, S. C. & LESLIE, M. (1987). Mineral. Mag. 

51, 157-170. 
RAO, K. R., CHAPLOT, S. L., CHOUDHURY, L., GHOSE, S., HAS- 

TINGS, J. M. & CORLISS, L. M. (1988). Phys. Chem. Mineral. 16, 
83-97. 



PILATI, BIANCHI AND GRAMACCIOLI 311 

RAO, K. R., CHAPLOT, S. L., CHOUDHURY, L., GHOSE, S. & PRICE, 
D. L. 0987). Science, 236, 64-65. 

REID, J. S. & SMITH, T. (1970). J. Phys. Chem. Solids, 31, 
2689-2697. 

RINALDI, R. & PAWLEY, G. S. (1973). Nuovo Cimento, 168, 
55-62. 

RINALDI, R. & PAWLEY, G. S. (1975). J. Phys. (Paris) Colloq. C8, 
599-616. 

Roam, R. A., HEMINGWAY, B. S. & TAKEI, H. (1982). Am. 
Mineral. 67, 470-482. 

ROSEN-FIELD, R. E., TRUEBLOOD, K. N. & DUNITZ, J. D. (1978). 
Acta Cryst. A34, 828-829. 

SCI-IERINGER, C. (1972). Acta Cryst. A28, 512-515; 516-522; 
616-619. 

SCHOMAKER, V. ~: TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 
63-76. 

SCHOMAKER, V. ~r. TRUEBLOOD, K. N. (1984). Acta Cryst. A40, 
C-339. 

SHIMANOUCH1, T. (1963). Pure AppL Chem. 7, 131-145. 
SIMANOUTI, T. (1949). J. Chem. Phys. 17, 245-248. 
THOMPSON, J. H. C. (1935). Proc. R. Soc. London, Ser. A, 149, 

487-505. 
TRUEBIZIOD, K. N. (1978). Acta Cryst. A34, 950-954. 
TRUEBLOOD, K. N. & DUNITZ, J. D. (1983). Acta Cryst. B39, 

120-133. 
WILLIS, B. T. M. • PRYOR, A. W. (1975). Thermal Vibration in 

Crystallography. Cambridge Univ. Press. 
ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558-564. 

Acta Cryst. (1990). B46, 311-324 

Systematic Prediction of New Ferroelectric Inorganic Materials in Point Group 6 

BY S. C. ABRAHAMS 

lnstitut fffr Kristallographie der Universitdt Tffbingen, Charlottenstrasse 33, D-7400 Tfibingen, 
Federal Republic of  Germany 

(Received 6 November 1989; accepted 5 January 1990) 

Abstract 

A total of seven new families and sixteen structurally 
different inorganic materials with point group 6 are 
shown to satisfy the criteria presented previously by 
the present author [Acta Cryst. (1988), B44, 585-595] 
for predicting ferroelectricity. In case each prediction 
is experimentally verified, the 183 individual entries 
for point group 6 listed in the Inorganic Crystal 
Structure Database will result in over 80 new ferro- 
electrics, of which about 30 are rare-earth isomorphs. 
The total number of 'pure' ferroelectrics discovered 
through late 1988, as enumerated in Landolt- 
B6rnstein [(1989), III/28a], is 201. Consideration of 
structures containing tetrahedral ions located on 
trigonal axes has led to a broadening of the normal 
symmetric double-well potential concept for dis- 
placive ferroelectrics to include asymmetric potential 
minima. Spontaneous polarization reversal in such 
cases may result neither in equal polarization 
magnitudes nor in equal coercive fields for the two 
states. Additional categories of ferroelectric sub- 
stances considered include cryptoferroelectrics and 
also highly conductive ferroelectrics. Analysis of the 
database entries in space group P63 also results in the 
identification of over 20 structure determinations for 
which the assumption of polarity is probably 
incorrect. 

Introduction 

The principal structural requirement for a polar crys- 
tal to be considered as potentially ferroelectric is the 

0108-7681/90/030311-14503.00 

presence in the unit cell of a maximum atomic 
displacement of about 1 A along the polar direction 
from the corresponding position in which the result- 
ing spontaneous polarization is zero (Abrahams, 
1979, 1988). In addition, the largest atomic dis- 
placement from such a position must be significantly 
greater than about 0-1 A, or the r.m.s, amplitude of 
thermal displacement of that atom. Furthermore, the 
thermodynamic barrier to be overcome by each atom 
in reaching its location corresponding to zero spon- 
taneous polarization must be less than the equivalent 
of an applied d.c. field that is sufficient to reverse the 
polarization sense but that does not exceed the 
dielectric strength of the material, with an estimated 
phase-transition temperature that does not exceed 
about 2000 K. 

The phase-transition temperature (To) in a crystal 
satisfying the above criteria may be estimated by 
Abrahams, Kurtz & Jamieson's (1968) relationship, 
hereafter AKJ. In this, the square of the largest 
displacement (Az in A,) along the polar direction 
from the zero spontaneous polarization position by 
the metal atom forming the shortest and least ionic 
bonds in the structure is found to be proportional 
to Te: 

Tc = (:¢/2k)(Az) 2 K (1) 

where ~ is a force constant, k is Boltzmann's con- 
stant and .~/2k = 2.0 × 104 K A,- 2 

The given structural criteria, together with the 
AKJ relationship, have now been systematically 
applied to all entries in the Inorganic Crystal 
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